Abstract

The principle that it is better to let some guilty individuals be set free than to mistakenly convict an innocent person is generally shared by legal scholars, judges and lawmakers of modern societies. The paper shows why this common tract of criminal procedure is also efficient. We extend the standard Polinsky & Shavell (2007) model of deterrence to account for the commonly found bias against wrongful convictions (Type I) errors and in particular we show that while it is always efficient to minimize the number of Type I errors, a more than minimal amount of wrongful acquittals (Type II errors) may be optimal.

Keywords: Type I errors, Type II errors, evidence, optimal under-deterrence, Blackstone.

JEL classification: K14, K41, K42.
1 Introduction

A cornerstone of criminal procedures in modern democracies (and also in advanced societies of the past) is the robust protection granted to defendants through several procedural safeguards. Most of these mechanisms protect the innocent from mistaken convictions at the cost of allowing some guilty defendants to be set free. As Blackstone puts it: *it is better that ten guilty persons escape, than that one innocent suffer* (1766). More generally, it can be argued that it is better that “X > 1” guilty persons escape punishment than that one innocent person suffers. We will refer to the ratio between guilty persons wrongfully acquitted and innocent persons unjustly convicted as the *Blackstone error ratio*.

Incontrovertible as it seems, this characteristic of criminal procedure meets with little analysis from law & economics scholars. Standard models of deterrence consider both types of errors (convictions of the innocent and acquittals of the guilty) and show that they are both detrimental to deterrence (See Png, 1986; Polinsky and Shavell, 2007). They come to this conclusion observing that acquittals of guilty individuals dilute deterrence because they lower the probability of conviction, while convictions of the innocent lower the relative benefits of staying honest. According to these models, and under a number of other assumptions\(^1\), the authority should treat both types of errors as equal evils to deterrence. But if they are both equally bad in terms of deterrence, why should we care about minimizing convictions of the innocent even at the cost of allowing many acquittals of guilty individuals? In other words: is the Blackstone error ratio inefficient or do our models miss something from the picture? In the rest of this paper we will offer an extension of the standard model of optimal deterrence that reconciles the efficiency goals of the judicial system with the Blackstone error ratio. The paper is arranged as following: in the first part we introduce the Blackstone error ratio, and we give a brief overview of the literature. Then we introduce our model and show how the standard model of deterrence, if duly articulated to account for the social welfare implications of both Type I and Type II errors, explains the bias against Type I errors. We then derive some policy implications and conclude.

\(^1\)such as the fact that deterrence is the goal of criminal law, that individuals are rational expected utility maximizers and are neutral to risk.
2 Judicial errors in the literature

The trade-off between the two types of error has been known and discussed by lawyers and philosophers for a long time. Courts make recurrent mention of it and this seems to point at the case of a conscious and intentional, albeit not systematized, pursuit of a specific ratio of innocent convicted to guilty acquitted that is more favorable to the innocent. How much more favorable? While every court and scholar would agree that it is desirable to reduce Type I errors, how many more Type II errors are we willing to tolerate in order to achieve this goal? Every American student of law learns by heart Judge Blackstone’s maxim that gives this paper its title. The United States Supreme Court has recalled Blackstone’s principle although it has never committed to such a precise number2. Countless scholars have mentioned a precise number for this trade-off; however, as Volokh (1997) has pointed out, there is a great variety of opinions on what this number should be. Volokh finds mentions of the \(\frac{\text{Type-II}}{\text{Type-I}} \) trade-off that date back to Genesis3 and historically vary at least between \(X = 1000 \) to \(X = 1 \). As seen, Blackstone asserts that the optimal \(X \) must be equal to 10. However this is a severe underestimation if compared to, for instance, Benjamin Franklin’s figure of \(X = 100 \) and some other wildly inflated numbers mentioned in the literature7; but at the same time it looks pretty generous if compared with

2The Supreme Court cited Blackstone in “Coffin v. U.S.”, 156 U.S. 432 (1895). For direct mention of the trade-off see for instance “Hery v. United States” 61 U.S. 98 (1959): “It is better, so the Fourth Amendment teaches, that the guilty sometimes go free than that citizens be subject to easy arrest”, or the concurrent opinion of Judge Harlan in “In re Winship” 397 U.S. 358 (1970) where he states: “I view the requirement of proof beyond a reasonable doubt in a criminal case as bottomed on a fundamental value determination of our society that it is far worse to convict an innocent man than to let a guilty man go free”.

3Judge Blackstone’s quotation in the title is a reference to Genesis 18:23-32.

4Moses Maimonides, a Jewish Spanish legal theorist, interpreting the commandments of Exodus. Cited in Volokh (1997).

5Justinian’s Digest. 48.19.5pr. (Ulpianus 7 de off. procons.) sed nec de suspicionibus debere aliquem damnari divus traianus adsidio severo rescripsit: satius enim esse impunium relinquui facinus nocentis quam innocentem damnari. Also cited in Volokh (1997).

6“it is better [one hundred] guilty Persons should escape than that one innocent Person should suffer”. Letter from Benjamin Franklin to Benjamin Vaughan (Mar. 14, 1785), in Franklin and Smyth (1970) cited in Volokh (1997).

7See also Reiman and van den Haag (1990).
– for instance – Hale’s $X = 5^8$ or Ayatollah Hossein Ali Montazeri’s $X = 1^9$.

Irony aside, the Blackstone error ratio in its extremely variegated declinations expresses the principle that, for a number of reasons, it is better that the criminal procedure produces more mistakes against society (acquittal of the guilty) than against individuals (conviction of the innocent), under the assumption that the total number of mistakes, given a certain level of forensic technology, is irreducible below a certain threshold. Better that some criminals be set free than that any innocent person be jailed, or, to use the law & economics jargon of Judge Posner (1999), the costs of convicting the innocent far exceed the benefits of convicting one more guilty individual. To conclude, there appears to be an enduring preference, even across different legal systems, for allowing concern over the possible wrongful conviction of an innocent individual to prevail over the desire for the apprehension of a guilty one.

Has law & economics explained this characteristic of criminal procedure? There are a number of papers that postulate the Posnerian assertion that Type I errors are far worse than Type II errors, and simply weight the two errors differently in their functions of social costs (See Miceli, 1991; Lando, 2009). Harris (1970) first extends Becker’s (1968) model to include the social costs of Type I errors. Ehrlich (1982) adds an independent term that measures the social costs of miscarriage of justice to his function of the social costs of crime that society needs to minimize. In any case, these models do not explain the Blackstone bias but simply assume it and express the bias by weighting the two errors differently. As we will see, our model explains this different weight from within the model. Indeed one could still feel the need to weight Type I errors more than Type II errors, for other reasons which we do not address in this paper, and this would reinforce our main conclusions.

Some recent literature tries to endogenize the Blackstone error ratio. Hylton and Khanna (2007) develop a public-choice account of the pro-defendant mechanisms in criminal procedure that affect the Blackstone error ratio as a set of safeguards against the prosecutor’s potential misconduct. In their view the Blackstone error ratio is the result of a second-best equilibrium achieved within the constraint of an irreducible inclination of prosecutors to over-convict defendants (for various public-choice reasons). Persson and

8Hale and Emlyn (1736) cited in May (1875).
Siven (2007) formulate a general equilibrium model of crime deterrence where the Blackstone error ratio for capital punishment emerges endogenously as a result of a median voter mechanism applied to courts. Both models depart from the standard model of deterrence. We derive justifications for the Blackstone error ratio straight from the standard model of public enforcement of law as set out definitively by Polinsky and Shavell (2007). We also extend their framework to model the behavior of the adjudicative authority and we show how the commonly observed paucity in producing Type I errors (even at the cost of producing many Type II errors) is perfectly explained in terms of optimal deterrence.

3 The Model

All criminal procedures in modern democracies presume the defendant’s innocence until proven guilty. To put it in statistical terms, the innocence of the defendant is the null hypothesis which the courts are presented with and which prosecutors try to confute. Courts, hearing the opposing arguments of the parties, decide on the basis of the evidence presented. We set the null hypothesis on the option that the accused is innocent\(^{10}\). An incorrect rejection of the null hypothesis corresponds to the conviction of an innocent person and implies a Type I error whereas an incorrect acceptance of the null amounts to the acquittal of a guilty person and is described as a Type II error\(^{11}\). The sum of the two errors is considered a rough measure of the accuracy of adjudication (Kaplow, 1994).

Let \(e \in [0, \infty] \) be the prosecutor’s differential ability to convince the court of the defendant’s guilt. The capacity of the prosecutor to prove guilt varies with each accused as individuals have different abilities to confute the allegations of guilt before the court. These differential abilities depend upon, \textit{inter alia}, i) the capacity to afford good lawyers (which is independent of either actual innocence or guilt) and the ease with which exculpatory evidence can

\(^{10}\)Here we set the null hypothesis on the option that the defendant is innocent. For various reasons it is more common to find in the literature the null hypothesis set on the option that the defendant is guilty. See for instance Polinsky and Shavell (2000); Persson and Siven (2007). Hence they obtain definitions of Type I and Type II errors that mirror ours.

\(^{11}\)On the use of statistics in evidence see also Yilankaya (2002); Posner (1999); McCullifff (1982); Daughety and Reinganum (2000); Froeb and Kobayashi (2001). For a critical perspective see Allen and Pardo (2007).
be produced (which in contrast is dependent upon innocence/guilt). It is reasonable to assume that, on average, the prosecutor’s ability to prove the guilt of innocent persons is low, whereas it is relatively high in respect of guilty individuals. Thus, let us define $I(e)$ as the positive, continuous and differentiable cumulative function of e for innocent individuals. Furthermore, let us define $G(e)$ as the positive, continuous and differentiable cumulative function of e for guilty individuals.12 $G(e)$ has first-order stochastic dominance over $I(e)$.

In order to obtain a conviction, a certain threshold of e must be overcome. Suppose the court rejects the null hypothesis when the prosecutor reaches an $e > \tilde{e}$. The probability of convicting an innocent person is thus $1 - I(\tilde{e})$. The probability of convicting a criminal is $1 - G(\tilde{e})$. This case is represented in figure 1.

In figure 1 above, we note that when we increase the burden of evidence ($\tilde{e} \to \tilde{e}'$) necessary to obtain a conviction, we reduce the probability of conviction both for guilty and for innocent individuals as $1 - I(\tilde{e}') < 1 - I(\tilde{e})$ and $1 - G(\tilde{e}') < 1 - G(\tilde{e})$. Note that the probability of convicting an innocent individual $1 - I(\tilde{e})$ is also the probability of Type I error, and the probability of acquitting a guilty individual $G(\tilde{e})$ represents the probability of Type II error. Thus when the burden of evidence increases, the probability of Type II error also increases while the probability of Type I error decreases.

Other changes may happen when better forensic technology is introduced that allows the prosecutor to collect better evidence of guilt and thus helps the court to better distinguish guilty individuals from innocent ones. For a given standard of evidence (\tilde{e}) required by the procedure, better forensic technology usually improves the ability of the prosecutor to produce incriminating evidence for the guilty and reduces it for the innocent. This implies that the distributions of the differential abilities are less dispersed and more distinguishable (See figure 1). Note that improved forensic technology on average reduces both the probability of Type I error as $1 - I'(\tilde{e}) < 1 - I(\tilde{e})$ and the probability of Type II error as $G'(\tilde{e}) < G(\tilde{e})$.

We distinguish between a long-term horizon where changes in the standard of evidence and in forensic technology may happen and the short-term horizon where these are fixed. Arguably a modern lawmaker should aspire to

12An alternative way of thinking of it is to simply assume e to be the incriminating proofs for the defendant. We can assume that the prosecutor can gain more proofs against a guilty defendant than against an innocent one. $G(e)$ and $I(e)$ are the cumulative function of proofs against the guilty and the innocent respectively.
Figure 1: Probability distributions of the authority’s differential ability to prove guiltiness, for guilty and innocent persons.
obtain a legal framework that produces zero errors of any type. However, as Harris (1970) shows, in the long term social preferences may favor different regimes and the political process may build on one extreme some "law and order" or "zero tolerance" type of equilibrium compatible with a high number of Type I errors or on the other extreme a very radical approach to civil liberties that imposes a very high number of Type II errors. Depending on these long-term trends, a society sets (by statute or case law) the standard of evidence necessary for a court to convict. The court thus in the short term faces an exogenously determined \(\epsilon \).

Of course in the long term forensic technology also improves. Knowledge and technical discoveries can be thought of as irreversible so the distance between the two distribution necessarily widens in time. We can imagine that in the short term courts may voluntarily surrender the use of more accurate technology in order to contain costs\(^{13}\).

In the short term, which is our main horizon of analysis, the set of rules, the standard of proof and the forensic technologies are given. These technological and legal constraints imply a lower bound on errors: in the short term the court system generates at its best a given probability of Type I error equal to \(\varepsilon_{1\text{min}} \in [0, 1) \), and a minimum probability of Type II error \(\varepsilon_{2\text{min}} \in [0, 1) \). Of course courts may produce higher error levels because courts still retain a certain discretion\(^{14}\). Note that \((1 - \varepsilon_{1\text{min}}) > \varepsilon_{2\text{min}}\), because of the assumption of first-order stochastic dominance. Let us define the errors’ relation – our Blackstone’s error ratio – as \(X = \frac{\text{Type II}}{\text{Type I}} = \frac{G(\cdot)}{(1 - I(\cdot))} \). In our horizon, the Blackstone’s error ratio \(X = \frac{G(\cdot)}{(1 - I(\cdot))} \) falls within \([\varepsilon_{2\text{min}}, \frac{1}{\varepsilon_{1\text{min}}}]\). Let us define \(\tilde{X} \) as \(\frac{\varepsilon_{2\text{min}}}{\varepsilon_{1\text{min}}} \) and note that it falls within the interval.

3.1 Individual choice to commit crime

Let us define \(w \) as the individual differential gain from crime; \(w \) is a random variable with a certain probability distribution \(z \) and a certain cumulative distribution \(Z \).

Let \(q \) be the probability of detection, \(0 < q \leq 1 \), that is to say the probability that the police accuse an individual (either innocent or guilty)

\(^{13}\)See further in the text; in particular the discussion of Proposition 3.

\(^{14}\)For instance prosecutors and judges may be particularly unskilled, ignorant or ideologically biased. Or they might wilfully fail to make use of all the legal tools or accurate forensic technologies at their disposal.
of a crime. In this model, \(q \) is exogenous as it simply depends on police efficiency or on nature\(^{15} \). Once the police detect an individual they bring him to court where he goes through the procedure that establishes whether he is to be convicted and sentenced.

Note that probability of detection \(q \) and the probabilities of Type I and Type II errors are independent. In fact the probabilities of error depend only on innocence/guilt and on the procedural, institutional and technological setting.

\(c_p \) is the private cost of the sentence. This could be either a monetary loss in case of a fine or the disutility suffered because of imprisonment.

Individuals, who are assumed to be rational and risk-neutral, choose to stay innocent or to commit a crime by comparing the expected utility of staying innocent \(-q(1-I(\tilde{e}))c_p\) and the expected utility of committing the crime \(w-q(1-G(\tilde{e}))c_p\). Thus, the individual condition for committing a crime is:

\[
 w-q(1-G(\tilde{e}))c_p > -q(1-I(\tilde{e}))c_p
\]

(1)

and therefore, in order to commit a crime the individual gain from crime must be such that \(w > \tilde{w} \) where

\[
 \tilde{w} = qc_p[I(\tilde{e}) - G(\tilde{e})]
\]

(2)

We can identify a “deterrence effect” à la Becker (1968). Note that \(\tilde{w} \) increases with both the probability of detection and the private costs of punishment \((\uparrow q, c_p \Rightarrow \uparrow \tilde{w})\). We can also observe an “underdeterrence effect” of judicial acquittals of guilty individuals as \(\tilde{w} \) decreases when the probability of mistaken acquittal increases \((\uparrow G(\tilde{e}) \Rightarrow \downarrow \tilde{w})\). Similarly we can identify a “compliance effect” of Type I errors \((\uparrow I(\tilde{e}) \Rightarrow \uparrow \tilde{w})\) as \(\tilde{w} \) increases when correct convictions increase (and thus Type I errors decrease).

Finally, we can also identify a “screening effect”. Let us define \((I(\tilde{e}) - G(\tilde{e})) = \Delta(.)\) as the difference between the probabilities of being acquitted respectively when innocent and guilty. \(\Delta(.) \) represents the ability of the court to distinguish innocent from guilty individuals: the better the court can distinguish between innocent people and criminals, the higher the advantages of staying honest \((\uparrow \Delta(.) \Rightarrow \uparrow \tilde{w})\). Note that equation 2 can also be rewritten as: \(I(\tilde{e}) - G(\tilde{e}) \geq \frac{w}{qc_p} \). From an individual perspective, the left term of

\(^{15}\)On different detection technologies see Mookherjee and Png (1992).
the inequality represents the minimum “distance” between the probability of being acquitted when innocent and the probability of being acquitted when guilty that induces an individual to stay honest. Thus a certain ability to screen between innocent and guilty is necessary to guarantee that some people stay honest. This distance increases with w and decreases with the expected private cost of conviction ($q_c p$).

3.2 Social perspective

Criminal activities and the enforcement system imply three costs. First, the conviction of a defendant implies a private cost (c_p) for the individual (the disutility suffered because of the conviction) and also a social cost (c_s). The social costs of the conviction are the costs of imprisonment (Polinsky and Shavell, 1984) and more generically the enforcement costs of both monetary and non-monetary penalties (Polinsky and Shavell, 1992). Moreover, there is h which is the harm caused to society caused by the crime. For simplicity, we assume that w is a transfer from the victim to the criminal that cancels out in the social welfare function. However, this forced transfer may produce h which is the socially relevant externality caused by the crime.

The population is normalized to 1. We assume the social planner to be risk-neutral and to have the goal of maximizing social welfare. Thus, for a given set of rules (mainly, the standard of evidence needed \tilde{e}) the problem of the authority lies in defining the optimal level of judicial errors in order to minimize the expected total costs from crime (TC).

$$
TC = \left[1 - Z(\tilde{w})\right]h + \left[1 - Z(\tilde{w})\right]q \left(1 - G(.)\right) [c_s + c_p] \\
+ Z(\tilde{w})q \left(1 - I(.)\right) [c_s + c_p]
$$

Term A of equation (3) represents the expected social harm from crime; Term B represents expected total (private and social) costs of convicting criminals; and Term C represents expected total costs of convicting innocent people. By looking at equation (3) some preliminary considerations can be made. Consider Term A. We already know from Png (1986) that a surge in both errors dilutes deterrence and increases the probability that individuals
become criminals16 \(1 - Z(\bar{w})\). Thus in Term A, both errors equally increase the social costs of crime \([h]\). However, our equation (3) shows that there are differences in the way the two errors affect deterrence. Note that Type II errors \([G(.))\] ambiguously affect the expected social costs of convicting criminals: on the one hand they increase the number of criminals \([1 - Z(\bar{w})]\) but on the other hand (by definition) they reduce the probability of convicting any criminal (Term B). Finally, Type II errors reduce the number of innocent people and thus decrease the social cost of convicting an innocent person (Term C). Now let us focus on Type I errors \([1 - I(.))\]. We have already seen in Term A that Type I errors dilute deterrence and thus increase the social harm of crime \([h]\). Term B shows that Type I errors increase the number of criminals and thus unambiguously increase the social costs of convicting criminals. However, we see in Term C how Type I errors ambiguously affect the expected social costs of convicting innocent people: on one hand they increase the probability of convicting an innocent person (by definition) but on the other hand they decrease the pool of innocent people \(Z(\bar{w})\). Thus, Type I and Type II errors determine multiple and complex effects on the three addenda of the social function. The table summarizes these effects.

<table>
<thead>
<tr>
<th>Error effects on the addenda</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I ((1 - I(\hat{e})))</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Type II ((G(\hat{e})))</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>

Table 1: The effects of the two errors on the addenda of equation 3

We can conclude that the net effects of both judicial errors on the social cost of crime appear ambiguous. In order to disentangle these effects we proceed by specifying the distribution of \(w\) and by deriving equation (3).

4 The optimal Blackstone ratio with a Pareto distribution

For a given set of rules \((\hat{e},\) forensic technology\), the short-term goal of the social planner is to identify the optimal level of Type I and Type II errors in

16See section A.1 and A.2 for the derivation of the result when applying the Pareto distribution.
order to minimize the social costs of crime. Thus

\[
\min_{l(\cdot), \sigma(\cdot)} TC \\
\text{s.t. } \tilde{w} = qc_p \Delta(\cdot) \\
\text{s.t. } \Delta(\cdot) > 0
\]

In order to derive this result in the following part of the paper we assume that \(w \) is distributed with a Pareto distribution \(z(w; k, w_{\text{min}}) \), where, as usual, \(k > 0^{17} \), \(w_{\text{min}} > 0 \) and the distribution is supported in the interval \([w_{\text{min}}, \infty]\). We use the Pareto distribution because it is both positively descriptive and mathematically tractable. As for the first reason, we know how well the Pareto distribution fits the usually observed distribution of wealth and income\(^{18}\) (Pareto, 1896; Levy and Solomon, 1997). This is because the long right tail describes inequality, that is to say the possibility of a few extremely large outcomes. The Pareto distribution also fits well with the gains from crime we try to model in this paper. In fact the Pareto distribution describes well the possibility of having quite a large number of individuals who can extract minor gains from petty crime and a small number of criminals that can get extremely large outcomes from serious crime and so on\(^{19}\). Besides, the Pareto distribution is also mathematically convenient. However this assumption is without loss of generality: by assuming a generic, well-behaved distribution function our results do not change, but analysis becomes intractable. Note that \(z \) is independent of the two probability distributions of the prosecutor’s differential abilities of convincing the court of

\(^{17}\)k is the Pareto index (since a proportion must be between 0 and 1, inclusive, the index must be positive). The larger the Pareto index, the smaller the proportion of very high-income people.

\(^{18}\)The Pareto distribution also describes a range of situations including insurance (where it is used to model claims where the minimum claim is also the modal value, but where there is no set maximum). Other social, scientific, geophysical and actuarial phenomena are sometimes seen as Pareto-distributed. For instance the sizes of human settlements - few cities, many villages; the standardized price returns on individual stocks; the severity of large casualty losses for certain lines of business such as general liability and so on.

\(^{19}\)Consider a homicide: some criminals could extract very high gains because for instance the homicide allows them to control a gang or extract a high rent while if the same homicide is carried out by a drug addict suffering withdrawal symptoms it could lead to few and very short-term gains. Consider also the peddling of a given amount of cocaine. A well organized criminal may extract high gains from it while it could easily land a clumsy crook in trouble.
the defendant’s guilt. Given a Pareto distribution of the gains from crime \(w \), the probability that an individual commits the crime is equal to:

\[
\Pr\left(w > \tilde{w}\right) = 1 - Z\left(\frac{\tilde{w}}{w_{\text{min}}} \right)^{-k}
\]

(5)

Lemma 1. \(I^*(.) = 1 - \varepsilon_{1\text{min}} \). *In order to minimize the social costs of crime, no innocent person should be convicted because the optimal probability of Type I error is the smallest possible one.*

As shown in the Appendix (A.3), \(\frac{\partial TC}{\partial (1-I(.))} > 0 \implies (1-I(.))^* = \varepsilon_{1\text{min}} \). The optimal level of Type I error is a corner solution in the interval \([\varepsilon_{1\text{min}}, 1]\). The normative implication of this lemma is that courts must convict as few innocent people as possible given the procedure and forensic technology that are in place. This result is not trivial given the different effects that the Type I error has on the different addenda of equation (3).

Lemma 2. \(G^*(.) < 1 \). *In order to minimize the social costs of crime, at least some criminals must be convicted because the optimal probability of Type II errors is always smaller than 1.*

As shown in the Appendix (A.4) the first and second-order conditions imply \(\frac{\partial TC}{\partial G(.)} = 0 \) and \(\frac{\partial^2 TC}{\partial G^2(.)} > 0 \). According to the first and second-order conditions \(G^*(.) = I^*(.) - \Delta^*(.) \). Now from Lemma 1 we substitute \(I^* = (1 - \varepsilon_{1\text{min}}) \) and obtain \(G^*(.) = (1 - \varepsilon_{1\text{min}}) - \Delta^*(.) \) which is always lower than 1. This lemma simply states that optimal deterrence needs at least some convictions. This implies that there must be an upper bound in our Blackstone error ratio \(X \) and thus some of the severely inflated numbers we have seen in Section 2 are likely not to lead to optimal deterrence.

Proposition 1. \(G^*(.) \geq \varepsilon_{2\text{min}} \). *If the costs of conviction are sufficiently high (relative to the social harm of crime), then some under-deterrence in the form of Type II errors is efficient.*

Even when the legal system is able to produce the ideal value of \(\varepsilon_{1\text{min}} = 0 \), \(G^*(.) \) is equal to zero if and only if \(\Delta^*(.) = 1 \). Since \(\Delta^*(.) = \frac{k}{1 - \varepsilon_{2\text{min}}} \) (see
appendix A.4), \(\Delta^*(. \! = \! 1 \) if \(c_s \! + \! c_p \! = \! \frac{h}{q} \frac{k}{1-k} \). Therefore if the costs of conviction are high enough \(([c_s \! + \! c_p] \! > \! \frac{h}{q} \frac{k}{1-k}) \) the optimal \(G^*(.) \) is an interior solution.

This result has important implications: Whenever punishment is costly, in order to minimize the social costs of crime at least some criminals must be acquitted because the optimal probability of Type II errors may be greater than the smallest possible Type II error.

Corollary 1. Optimal accuracy should be different for serious vis-à-vis less severe crimes.

Only when the social harm of crime is sufficiently high with respect to the total costs of conviction, is it then efficient to have Type II errors at their smallest possible number \(G^*(.) = e_{2\min} \). This implies that no (avoidable) wrongful acquittal should be allowed for serious crimes (those that produce high \(h \)) while some wrongful acquittals may be efficient for less severe crimes.

Now, focusing on the Type II/Type I error trade-off, note that, for a given set of rules, the optimal Blackstone error ratio \(X^* = \frac{G^*(.)}{(1-I^*(.))} \).

Proposition 2. \(X^* \geq \bar{X} \). The optimal Blackstone error ratio that minimizes the social costs of crime may be larger than \(\bar{X} = \frac{e_{2\min}}{e_{1\min}} \).

Recall that while \(I^*(.) = e_{1\min} \) (Lemma 1), \(G^*(.) \geq e_{2\min} \) (Proposition 1), at least when the costs of convictions are sufficiently high vis-à-vis the severity of the crime. Therefore the optimal Blackstone error ratio is \(X^* = \frac{G^*(.)}{\varepsilon_{1\min}} \). Note that \(X_{\min} < \bar{X} \leq X^* < X_{\max} \), where \(X_{\min} = \varepsilon_{2\min} \) and \(X_{\max} = \frac{1}{\varepsilon_{1\min}} \).

It is trivial to show that when the costs of conviction are zero, judicial errors affect only the probability of crime and the optimal Type I and Type II errors are equal to the lowest values possible \((X^*_{(c_s=c_p=0)} = X) \).

Finally, for every “short term” equilibrium, when the forensic technology and therefore \(\varepsilon_{1\min} \) and \(\varepsilon_{2\min} \) are given, we know that
\[
\left\{
\begin{array}{l}
I^*(\cdot) = 1 - \varepsilon_{1 \min} \\
\Delta^*(\cdot) = \frac{k}{1 - k q [c_s + c_p]}
\end{array}
\right.
\]

Proposition 3: $\Delta^*(\cdot)$ depends negatively on the social costs of conviction and positively on the harm caused by crime and on the Pareto index k.

$\Delta^*(\cdot)$ is the optimal “distance” between the probability of being acquitted when innocent and the probability of being acquitted when guilty. As such it could be interpreted as the court’s optimal ability to distinguish between innocence and guilt. Note that $\Delta^*(\cdot)$ is non-negative and that this is consistent with stochastic dominance. Furthermore, its first derivative with respect to its determinants respectively are

\[
\left\{
\begin{array}{c}
\frac{\partial \Delta^*(\cdot)}{\partial h}, \frac{\partial \Delta^*(\cdot)}{\partial w} > 0 \\
\frac{\partial \Delta^*(\cdot)}{\partial c_s}, \frac{\partial \Delta^*(\cdot)}{\partial c_p}, \frac{\partial \Delta^*(\cdot)}{\partial q} < 0
\end{array}
\right.
\]

The optimal distance $\Delta^*(\cdot)$ increases with the severity of crime (h). The implication of this finding is that, from a public perspective, it is more important for the court to better distinguish between innocent and guilty persons (hence use better technology for instance) in case of serious crimes; not only must serious crimes be penalised with higher sentences, but their cases must also be investigated more thoroughly.

The optimal distance $\Delta^*(\cdot)$ increases with the Pareto index (k) also. A high level of k means that there are few criminals able to extract a high w and many petty crooks with a low w (see footnote 19). In this case the ability to identify and convict major lawbreakers becomes crucial. In fact, we may note that, as shown in Appendix (B), the probability of a high level of w increases with k. Thus the probability of an individual becoming a criminal increases with k. The optimal distance $\Delta^*(\cdot)$ indicates that, from a social perspective, when k is large the optimal ability to correctly identify criminals must be high and the consequent optimal probability of Type II error must be low. Obviously, when private and social costs of conviction are relatively high (with respect to h and k) even a low ability to identify criminals and a consequent high level of Type II error can be socially efficient.
5 Conclusions and Policy Implications

The criminal procedure is inherently exposed to the risk of producing Type I and Type II errors. Some forms of safeguards against the occurrence of Type I errors (wrongful convictions) are embedded in the procedures of all modern liberal states, although this inevitably implies that more Type II errors (wrongful acquittals) are produced. In other words, all modern procedures are constructed in order to produce a Blackstone error ratio \(X > 1 \). With this paper we show that the standard model of public enforcement of law (as expounded by Polinsky and Shavell, 2007) can explain this bias and that even a large Blackstone error ratio is compatible with the standard model of deterrence. In this paper we focus only on the production of the judicial error at the court level and we take all other important variables of the Becker framework (such as the magnitude of punishment and the probability of detection) as given. We show that while courts should always strive to minimize Type I errors, they may let some Type II errors happen even where these could be avoided, if the costs of convictions are relatively high. In other words, and similarly to Polinsky and Shavell (1992), we show that some under-deterrence may be optimal\(^\text{20}\) if the costs of conviction are significant relative to the social harm. This could happen when for instance the prison system is inefficient or whenever petty crimes do not cause great social harm.

The intuition of the model is quite simple. From basic decision theory, we know that the two errors are inversely related: for instance, by raising the standard of proof we obtain more Type II errors and fewer Type I errors. Thus, suppose we have an error ratio of 1: there is exactly one Type II error for every Type I error. If we can slightly affect the ratio by adding and subtracting two arbitrary small quantities, \(\rho \) and \(\sigma \), to the Type II and Type I probabilities respectively such that \(\frac{\text{Type II} + \rho}{\text{Type I} - \sigma} \), then we achieve two effects. On one hand, one fewer Type I error increases deterrence (because it increases the expected returns from staying honest) while one more Type II error decreases deterrence (by increasing the expected returns from crime). Thus on balance deterrence should stay constant. On the other hand, one fewer Type I error with one more Type II error decreases the total costs of conviction and thus increases social welfare. It is thus efficient to trade one

\(^{20}\)However, while Polinsky and Shavell (1992) focus on the detection probability at the police level, we focus on the trade-off of errors at the court level.
error for the other. However, this holds true only for small values of ρ and σ. In fact, since the trade-off of the errors is not linear, at a certain point one fewer Type I error will be traded off against too many Type II errors, causing a drop of deterrence that cannot be compensated any further by the saved costs of conviction in our social welfare function.

Our paper offers an efficiency-based argument in support of the full array of pro-defendant features (such as mandatory disclosure, double jeopardy, the right to silence, the high burden of proof and so on) that characterize criminal procedure in all modern and democratic countries. As we have seen, all these pro-defendant features invariably alter the error ratio towards a Blackstone-like quotient. We explain how the associated costs in terms of decreased deterrence are compensated by lower conviction costs associated with more guilty defendants being acquitted.

Our proposition 1 and the following corollary have important policy implications. We show that some under-deterrence is efficient if the costs of conviction offset the social harm of crime ($c_p + c_s > h$). This result shows that the findings of Polinsky and Shavell (1984) are robust against the introduction of Type I errors. The corollary brings a more novel result, as it explains why courts should focus more on serious crime (for which no avoidable Type II error should be allowed) while they could let some criminals be acquitted for petty crimes (those with low h). Another policy implication that comes from the proposition suggests that, when the costs of conviction (c_p) are high, the court may allow more Type II errors to happen. This could represent an alternative tool to the clemency bills used in some countries to contain public deficits, which have adverse consequences for overall deterrence and the perception of the rule of law (see for instance Drago et al., 2009).

The model highlights the role of forensic technology in improving the courts’ capacity to distinguish optimally between the innocent and the guilty. Further work could be done introducing some costs of new technology.

Appendixes

A. First and second-order conditions

We derive the first and second-order conditions of equation 4.

Recall that the gain’s threshold is $\bar{w} = q_{c_p}(I(.) - G(.))$ and that the
probability of committing a crime given our Pareto distribution is \(\left(\frac{\tilde{w}}{w_{\text{min}}} \right)^{-k} = \left(\frac{qc_p(I(.)-G(.))}{w_{\text{min}}} \right)^{-k} \). In order to see the effects of the two errors on the criminal population we apply the Pareto distribution as in equation 5 to equation (3). We then partially derive the equation in respect of the two errors and see that, as predicted by Png (1986), both errors dilute deterrence.

A.1. The first derivative of the probability of committing a crime with respect to the complement to one of Type I error - probability of acquitting an innocent person

\[
\frac{d}{dI(\cdot)} = -k \frac{qc_p}{w_{\text{min}}} \left(\frac{\tilde{w}}{w_{\text{min}}} \right)^{-k-1} < 0
\]

A.2. The first derivative of the probability of committing a crime with respect to the probability of Type II error

\[
\frac{d}{dG(\cdot)} = +k \frac{qc_p}{w_{\text{min}}} \left(\frac{\tilde{w}}{w_{\text{min}}} \right)^{-k-1} > 0
\]

The social function is

\[
TC = \left(\frac{\tilde{w}}{w_{\text{min}}} \right)^{-k} h + \left(\frac{\tilde{w}}{w_{\text{min}}} \right)^{-k} q \left(1 - G(\cdot) \right) \left[c_s + c_p \right]
+ \left[1 - \left(\frac{\tilde{w}}{w_{\text{min}}} \right)^{-k} \right] q \left(1 - I(\cdot) \right) \left[c_s + c_p \right]
\]

A.3 We derive the first-order conditions: we calculate the first derivative of \(TC \) with respect to the sound convictions (the complement to one of the probability of Type I error):

\[
\frac{\partial TC}{\partial I(\cdot)} = -k \frac{qc_p}{w_{\text{min}}} \left[h + q \left(1 - G(\cdot) \right) \left[c_s + c_p \right] \right] \left(\frac{\tilde{w}}{w_{\text{min}}} \right)^{-k-1}
+ k \frac{qc_p}{w_{\text{min}}} q \left(1 - I(\cdot) \right) \left[c_s + c_p \right] \left(\frac{\tilde{w}}{w_{\text{min}}} \right)^{-k-1}
- \left[1 - \left(\frac{\tilde{w}}{w_{\text{min}}} \right)^{-k} \right] q \left[c_s + c_p \right] =
\]
\[= -k \frac{qc_p}{w_{\min}} \left(\frac{\tilde{w}}{w_{\min}} \right)^{-k-1} \left[h + q [c_s + c_p] (I(.) - G(.)) \right] \]

\[- \left[1 - \left(\frac{\tilde{w}}{w_{\min}} \right)^{-k} \right] q [c_s + c_p] < 0 \]

\[\Rightarrow \frac{\partial}{\partial (1 - I(.))} > 0 \Rightarrow (1 - I(.))^* = \varepsilon_{1\min} \]

A.4 The first derivative of TC with respect to the probability of Type II error:

\[\frac{\partial TC}{\partial G(.)} = +k \frac{qc_p}{w_{\min}} \left(\frac{\tilde{w}}{w_{\min}} \right)^{-k-1} \left[H + q (1 - G(.)) [c_s + c_p] \right] \]

\[- \left(\frac{\tilde{w}}{w_{\min}} \right)^{-k} q [c_s + c_p] = 0 \]

\[\Delta^*(.) = \frac{h}{q[c_s + c_p]} \left(\frac{k}{1-k} \right) \]

\[\Delta^*(.) = \frac{h}{q[c_s + c_p]} \geq 0 \]

\[G^*(.) = I^*(.) - \Delta^*(.) \]
\(G^*(.) = (1 - \varepsilon_{1\min}) - \Delta^*(.) < 1 \)

We also need the second-order condition: with respect to the probability of Type II error:

\[
\frac{\partial^2 TC}{\partial G(.)^2} = (k + 1) k \frac{qc_p}{w_{\min}} \frac{qc_p}{w_{\min}} \left(\frac{\bar{w}}{w_{\min}} \right)^{k-2} [h + q [c_s + c_p] (I(.) - G(.))] \\
- 2k \frac{qc_p}{w_{\min}} \left(\frac{\bar{w}}{w_{\min}} \right)^{k-1} q [c_s + c_p] > 0
\]

\[
(k + 1) k \frac{qc_p}{w_{\min}} \frac{qc_p}{w} [h + q [c_s + c_p] (I(.) - G(.))] > 2k \frac{qc_p}{w_{\min}} q [c_s + c_p]
\]

\[
h > q [c_s + c_p] (I(.) - G(.)) \left[\frac{2}{(k+1)} - 1 \right]
\]

\[
h > q [c_s + c_p] (I(.) - G(.)) \frac{1-k}{(k+1)}
\]

\[
(I(.) - G(.))^* = \Delta^*(.) = \frac{k}{1-k} \frac{h}{q [c_s + c_p]}
\]

\[
h > q [c_s + c_p] \frac{k}{1-k} \frac{h}{q [c_s + c_p]} \frac{1-k}{(k+1)}
\]

\[
h > \frac{k}{(k+1)} h (k + 1) > kh \text{ always true.}
\]

The second-order condition always holds in \((G^*, I)\).

B. The Pareto Distribution

The figures below show the probability density function and the cumulative distribution function of a Pareto distribution with different shapes and location \(w_{\min} = 1\)

\[
z(w) = \frac{k w^{k-1}}{k+1}
\]
\[Z(w) = 1 - \left(\frac{w_{\text{min}}}{w} \right)^k \]

Changes in \(k \) (larger than 1) or in \(w_{\text{min}} \) do not affect our analysis. Functions are plotted for \(k = 0.1; 0.3; 0.5; 0.7; 1 \) (from left to right in the first figure, from bottom up here above).
References

Hale, Matthew and Sollom Emlyn, Historia placitorum coronae. The history of the pleas of the crown, [London]: In the Savoy, Printed by E. and R. Nutt, 1736.

